AVR Helper Library 1.3

Dean Ferreyra
dean@octw.com
http://www.bourbonstreetsoftware.com/

November 11, 2008

Contents

1 Introduction

2 Build and Installation

2.1 Build.

2.2 Imstallation
3 EEPROM

3.1 Usage

3.2 Functions e
4 USART

4.1 Usage e

4.2 USART Receive Functions

4.3 USART Transmit Functions
5 Software UART Transmission

5.1 Usage o

5.2 Functions

53 Caveats

6 Basic SPI
6.1 Usage e
6.2 Functions e

7 Buffered SPI

7.1 Usage e

7.2 Functions

7.3 Unbuffered Interface
8 Resistor Divider Networks

8.1 Usage e

82 Functions

Thermistor 19

9.1 Usage e 19
9.2 Functions 19
9.3 Caveat 19
10 Network Order 21
10.1 Usage e 21
10.2 Functions e 21

Chapter 1

Introduction

The AVR Helper Library is a small collection of modules written in C that I
have found useful while developing and prototyping AVR-based software. It
includes a buffered USART module, buffered and unbuffered SPI modules, and
some odds and ends like “gentle” EEPROM update functions, a thermistor
temperature calculation function, and “endian” conversion functions.

I have released this code under the GNU Lesser General Public License with
the hope that others might find it useful.

Chapter 2

Build and Installation

To build and install the AVR Helper Library, you need to have already installed
the AVR GCC cross-compiler.

2.1 Build

To install the AVR Helper Library, unpack the source tree. If you downloaded
the *.tgz version, you can do this with the following command:

tar -xzf helper-1.3-src.tgz

Next, change directory to the head of the source tree that was just unpacked
and run the make command:

$ cd helper-1.3
$ make

This should build the AVR Helper Library for all the supported AVR micro-
controllers.

2.2 Installation

Once the libraries have been successfully built, you need to install the library
components to a location where the AVR GCC compiler can find them.

The default installation directory prefix is /usr/local. If you wish to change
this, you will have to edit the src/Makefile file in the source tree. In the
Makefile, you’ll find a line that looks like this:

prefix = /usr/local

Change this line to desired directory prefix. For example, if you're using
WinAVR, you will need to change this this point to where WinAVR has been in-
stalled. For example, if WinAVR has been installed in c:\WinAVR, then change
the prefix line to this:

prefix = c:/WinAVR
Finally, from the head of the source tree, or from the src directory, run this:

$ make install

Chapter 3

EEPROM

This module provides “gentle” EEPROM writing routines to help extend the
life of the on-chip EEPROM. Before each EEPROM data byte is written, these
functions read the byte from the EEPROM and only write the new byte if the
values are different.

3.1 Usage

To use the EEPROM writing functions, use this:

#include <eeprom-gentle.h>

3.2 Functions

void gentle_eeprom_write_byte(uint8_t *addr, uint8_t val) function

Writes a single byte val to EEPROM address addr, but only if the byte in the
EEPROM is different.

void gentle_eeprom_write_word(uintl6_t *addr, uintl6_t val) func-
tion

Writes the bytes of a single 16 bit word val to EEPROM address addr, but
only the bytes that are different than what is currently found in the EEPROM.

void gentle_eeprom_write_dword(uintl6_t *addr, uint32_t val) func-
tion

Writes the bytes of a single 32 bit word val to EEPROM address addr, but
only the bytes that are different than what is currently found in the EEPROM.

void gentle_eeprom_write_block(const void *buf, void *addr,
size_t n) function

Writes n bytes of the block pointed to by buf to EEPROM address addr, but
only the bytes that are different than what is currently found in the EEPROM.

Chapter 4

USART

This module provides basic buffered USART support for Atmel AVR microcon-
trollers. It support microcontrollers with 1 or 2 USART ports.

This module separates the actions of receive and transmit into independent
parts. This way, if you will only be receiving or only be transmitting, you only
need to link in and initialize the relevant part.

4.1 Usage
To use the USART functions for microcontrollers that only support one USART
port, use this:

#include <uart.h>

and use the function names as shown below.
To use the USART functions for microcontrollers that support two USART
ports, use this:

#include <uart0.h>
#include <uartil.h>

and append the digit 0 or 1 to the function names shown below to pick the
appropriate port. For example, the following initializes the transmit functions
of USART port 1 and transmits a single character:

uart_tx_init1(Q);
uart_tx_char1(’x’);

4.2 USART Receive Functions

void uart_rx_init(void) function

This function initializes the receive part of this module. This entails enabling
the USART receive line and enabling the USART receive interrupt. Also, it

automatically links in the default receive interrupt service routine from the
library.
void uart_rx_init_no_isr(void) inline

This function is identical to vart_rx_init (), but it does not link in the de-
fault receive interrupt service routine. In this case, you must provide your own
interrupt service routine.

void uart_rx_clear(void) function

This function clears the receive buffer.

int uart_rx_char(void) function

This function takes a character from the receive buffer and returns it. If the
receive buffer is empty, this function returns -1.

4.3 USART Transmit Functions

void uart_tx_init(void) function

This function initializes the transmit part of this module. This entails enabling
the USART transmit line. Also, it automatically links in the default transmit
interrupt service routine from the library.

void uart_tx_init_no_isr(void) inline

This function is identical to uart_tx_init (), but it does not link in the default
transmit interrupt service routine. In this case, you must provide your own
interrupt service routine.

void uart_tx_clear(void) function

This function clears the transmit buffer.

bool uart_tx_char(char c) function

If there is room in the transmit buffer, this function places the given character,
c, into the transmit buffer. If the transmit interrupt is disabled, it enables
the interrupt which starts the transmission process. If the transmit interrupt
is already enabled, a transmission is already in progress and the character will
eventually be transmitted. The function then returns true.

If the transmit buffer is full when this function is called, it does nothing and
returns false.

bool uart_tx_str(const char* str) function

If there is room in the transmit buffer, this function places the given string,
str, into the transmit buffer. If the transmit interrupt is disabled, it enables
the interrupt which starts the transmission process. If the transmit interrupt
is already enabled, a transmission is already in progress and the character will
eventually be transmitted. The function then returns true.

If the transmit buffer is full when this function is called, it does nothing and
returns false.

bool uart_tx_str_P(PGM_P str) function

This function is analogous to uart_tx_str(), except that instead of taking a
string in RAM, str points to a string stored in the program space.

const char* uart_tx_str_partial(const char* str) function

This function places into the transmit buffer as many characters from the given
string, str, as will fit.

If any characters were placed into the transmit buffer, and the transmit
interrupt is disabled, it enables the interrupt which starts the transmission pro-
cess. If the transmit interrupt is already enabled, a transmission is already in
progress and any characters placed into the transmit buffer will eventually be
transmitted.

If all the characters in str were placed into the transmit buffer, then this
function returns 0. Otherwise, it returns a pointer to the characters in the
string that were not placed into the transmit buffer. This way, you can use the
returned string to try again latter.

PGM_P uart_tx_str_partial P(PGM_P str) function

This function is analogous to uart_tx_str_partial(), except that instead of
taking a string in RAM, str points to a string stored in the program space.
Also, it returns a pointer to the remaining characters stored in the program
space.

bool uart_tx_data(const char* data, uint8_t count) function

This function is analogous to uart_tx_str (), except that instead of taking >\0’
terminated string, it takes a character pointer to data, data, and the number of
characters to transmit, count. If all count characters will not fit in the transmit
buffer, this function returns false. Otherwise, it returns true.

uint16_t uart_generate_ubrr(uint32_t fosc, uint32_t baud) function

This function calculates the closest UBRR value for the given oscillator frequency,
fosc, and the desired baud rate, baud.

10

Chapter 5

Software UART
Transmission

This module provides buffered, software-based, transmit-only UART function-
ality. TIMERO is the baud-rate generator. By default, this module twiddles
PORTE bit 1 or PORTD bit 1. By redefining a couple of functions you can make
any output bit the transmit line.

5.1 Usage

To use the transmit-only UART functions, place this include in your source file:

#include <tx-only.h>

5.2 Functions

void tx_only_init(uint8_t timerO_mode, uint8_t timerO_count) func-
tion

This function initializes TIMERO by placing it in the given mode, timerO_mode,
and setting the counter value to timerO_count. Finally the OCIEO interrupt is
enabled.

Only the three low-order bits of the timer0O_mode argument are used. Reg-
ister TCCRO is updated with these bits, plus bit CTCO. Register OCRO is updated
with timerO_count.

For example, to simulate a 9600 baud UART transmission line on an AT-
megal(03 running at 4 MHz, call tx_only_init () like this:

tx_only_init(0x02, 4000000 / 8 / 9600);

11

void tx_only_clear() function

This function clears the transmit buffer.

bool tx_only_chr(uint8_t c) Sfunction
If there is room in the transmit buffer, this function places the given character,
¢, into the transmit buffer and the function then returns true. Otherwise, it
returns false.

bool tx_only_str(const uint8_t* str) function
If there is room in the transmit buffer, this function places the given string, str,
into the transmit buffer and returns true. Otherwise, it returns false.

bool tx_only_str_P(PGM_P str) function
This function is analogous to tx_only_str(), except that instead of taking a
string in RAM, str points to a string stored in the program space.

void tx_only_port_low() optional user-defined function
void tx_only_port_high() optional user-defined function

These two functions are provided by the programmer to twiddle the bits of the
transmission line. The “low” and “high” that appear in their names are in
reference to the signal level, where “low” means a negative voltage, and “high”
means a positive voltage.

These functions are optional. If you don’t provide them, the library supplies
its own version that twiddles PORTE bit 1 (or if the microcontroller does not
have PORTE, then PORTD bit 1).

5.3 Caveats

As written, this module has many limitations:
e [t supports only one UART.
e It is hard-coded to use TIMERO.
e All of the functions are linked into the image, even if they’re not used.

e Because the interrupt service routine calls two possibly user-defined func-
tions, it is especially slow.

12

Chapter 6

Basic SPI

This module provides a basic interface to the microcontroller SPI in master
mode. It utilizes an interrupt service routine to clock out the SPI data asyn-
chronously.

6.1 Usage

To use the SPI module, place the following in your source files:

#include <spi2.h>

6.2 Functions

void spi2_init(void) function

This function places the SPI into “master” mode, enables the SPI, and enables
the SPI interrupt. The library provides the required interrupt service routine.

bool spi2_busy(void) function

This function returns true if the SPI module is busy clocking SPI data. While
the SPI module is busy, spi2_send_byte() and spi2_send_data() will do
nothing and will return false.

bool spi2_send_byte(uint8_t* b, volatile bool* done_flag) function

This function begins an asynchronous SPI exchange of one byte. The data
to transmit is the byte pointed to by b. If done_flag is not NULL, when the
exchange is complete, the interrupt service routine sets this flag to true. After
the exchange, the byte pointed to by b will contain the received byte.

While the module is busy exchanging the byte, it is important that the
location pointed to by b remain valid. For example, it would be an error if b

13

points to a location on the stack that goes out of scope while the exchange is
taking place.

bool spi2_send_data(uint8_t* d, uint8_t s, volatile boolx
done_flag) function

This function begins an asynchronous SPI exchange of s bytes of the data
pointed to by d. If done_flag is not NULL, when the exchange is complete, the
interrupt service routine sets this flag to true. After the exchange, the data
pointed to by d will contain the received data.

While the module is busy exchanging the byte, it is important that the
location pointed to by d remain valid. For example, it would be an error if d
points location on the stack that goes out of scope while the exchange is taking
place.

14

Chapter 7

Buftfered SPI

This module provides a buffered interface to the microcontroller SPI in mas-
ter mode. It utilizes an interrupt service routine to clock out the SPI data
asynchronously.

Each data transfer request can include execution of a user-defined function
just before the transmission begins and just after the transmission completes.
The user-defined functions can do things like enable and disable chip-select lines
and change SPI clocking frequencies to allow you to buffer SPI transmissions
for multiple SPI devices.

7.1 Usage

To use the SPI module, place the following in your source files:

#include <spi3.h>

7.2 Functions

void spi3_init(void) function
This function places the SPI into “master” mode, enables the SPI, and enables
the SPI interrupt. The library provides the required interrupt service routine.

bool spi3_clock_data(uint8_t* data, uint8_t size, void

(*pre) (void), void (*post)(void), volatile boolx* done) function

This function buffers an SPI data transfer request. A data transfer request
consists of:

data Pointer to the data to exchange.

size Number of bytes to exchange.

15

pre Thunk called by the interrupt service routine before the ex-
change begins.

post Thunk called by the interrupt service routine after the ex-
change ends.

done Pointer to a Boolean set by the interrupt service routine to
true once the exchange ends and the call to post completes.

If there is room in the buffer, the request is buffered and spi3_clock_data() re-
turns true. Otherwise, spi3_clock_data() returns false. The data is clocked
onto the SPI bus once all previously buffered requests are completed. Any pend-
ing requests placed in the buffer by calls to spi3_pend_data() will no longer
be considered pending and they will all eventually be clocked onto the SPI.

The arguments pre, post, and done are optional; passing a NULL causes
spi3_clock_data() to ignore that argument.

Note that the memory pointed to by data and done must remain valid until
the exchange is complete. For example, it would be an error if data were to
point to a location on the stack and that location were to go out of scope while
the exchange was taking place.

Note also that the pre and post thunks are called directory from the inter-
rupt service routine.

bool spi3_pend_data(uint8_t* data, uint8_t size, void
(*pre) (void), void (*post)(void), volatile bool* done) function

This functions is similar to spi3_clock_data(), except that the data trans-
fer request is held pending in the buffer without being clocked onto the SPI
bus. This function can be called repeatedly to buffer more requests. Pend-
ing transfer requests will begin being clocked onto the SPI the next time
spi3_clock_data() is called.

This function is useful when a multi-byte exchange needs to take place with-
out interruption, but when it is more convenient to build the multi-byte ex-
change in pieces.

void spi3_clear_pending(void) function

This function clears any pending requests that have been placed in the buffer
by spi3_pend_data().

7.3 Unbuffered Interface

There is also an unbuffered version of this interface that does not use an interrupt
service routine. To use the unbuffered version, place the following in your source

files:

#include <spi3-no-isr.h>

16

Every function from the buffered interface is available, but each function is
prefixed with spi3_no_isr instead of spi3.

Because the data is not buffered, spi3_no_isr_clock_data() and
spi3_no_isr_pend_data() both immediately clock out the data to the SPI
bus.

void spi3_no_isr_wait(void) user-defined function

This user defined function is called by spi3_no_isr_clock_data() and
spi3_no_isr_pend_data() before placing the next byte into SPDR. At the very
least, it should wait for the SPIF flag in SPSR to be set, like this:

void spi3_no_isr_wait(void)
{
while (! (SPSR & _BV(SPIF)))

’

3

By having the wait function be a user-defined function, you can program in an
escape or a timeout check, something like this:

void spi3_no_isr_wait(void)
{
while (! (SPSR & _BV(SPIF)))
check_timeout();

17

Chapter 8

Resistor Divider Networks

This module provides functions to calculate values from resistor divider net-
works.

8.1 Usage

To use the resistor divider network functions, use this:

#include <resistor-network.h>

8.2 Functions

uintl6_t divider_network_lower_resistor(uintl6_t v_ad_max,
uint16_t v_ad_counts, uintl6_t r_upper) function

This function calculates the resistance of the lower resistor of a resistor divider
network, given the maximum A/D counts v_ad_max, the measured A/D counts
v_ad_counts for the divider network, and the known resistance r_upper in
ohms of the upper resistor. It uses the equation

Vmeasured

]zlower }Eup X -‘ r -‘ r
pe
max measured

to arrive at the result.

uint16_t divider_network_voltage(uinti16_t v_ad_counts, uintl6_t
r_upper, uintl6_t r_lower) function

This function calculates the voltage feeding into a resistor network given the
measured A/D counts v_ad_counts, and the the known resistances in ohms of
the upper resistor r_upper and the lower resistor r_lower. It uses the equation
Rupper + Rlower

Vnetwork = Vmeasured X
Rlower

18

to arrive at the result.

19

Chapter 9

Thermistor

This module provides a function to calculate the temperature of a thermistor
using an exponential model for NTC (negative temperature coefficient) thermis-
tors.

9.1 Usage

To use the thermistor function, use this:

#include <thermistor.h>

9.2 Functions

float thermistor_t2_at_r2(float beta, float t1, float r_t1, float
r_t2) function

This function uses an exponential model for NTC thermistors to approximate
the thermistor’s temperature from its resistance. This function returns a ther-
mistor’s temperature given the thermistor’s § value, beta, the nominal resis-
tance, r_t1, at the nominal temperature, t1, and the measured resistance, r_t2.
The temperatures must be in an absolute temperature scale; e.g., Kelvin. The
equation used is:

Se

9.3 Caveat

Generally, this model is not as accurate as a table lookup can be. The measured
temperature should fall within the range that the 8 value was calculated for,
and if you have a choice of § values, you should choose the § value calculated
over the smallest range that still suits your expected temperature range.

20

Also, this module uses floating calculations and log() to perform its calcu-
lation. The floating-point library is large and floating point calculations can be
relatively slow.

21

Chapter 10

Network Order

This module provides functions to convert from the native byte order on the
AVR microcontroller to a big-endian network order like the order used by the
Internet Protocol.

10.1 Usage

To use the network order module, place the following in your source files:

#include <network.h>

10.2 Functions

uint16_t htons(uint16_t host) function
This function takes a 16 bit word in host order, host, and returns it in network
order.

uint32_t htonl(uint32_t host) function
This function takes a 32 bit word in host order, host, and returns it in network
order.

uint16_t ntohs(uintl16_t network) function
This function takes a 16 bit word in network order, network, and returns it in
host order.

uint32_t ntohl(uint32_t network) function

This function takes a 32 bit word in network order, network, and returns it in
host order.

22

uint16_t ntohb2(const uint8_t* network2) function
This function takes a pointer to two bytes in network order, network2, and
returns its value in host order.

void htonb2(uint16_t host, uint8_t* network2) function
This functions takes a 16 bit word in host order, host, and writes its value in
network order at the two bytes pointed to by network?2.

uint32_t ntohb3(const uint8_t* network3) function
This function takes a pointer to three bytes in network order, network3, and
returns its value in host order.

void htonb3(uint32_t host, uint8_t* network3) Sfunction
This functions takes a 32 bit word in host order, host, and writes its value
in network order at the three bytes pointed to by network3. Only the least
significant 24 bits of host are used in this conversion.

uint32_t ntohb4(const uint8_t* network4) function
This function takes a pointer to four bytes in network order, network4, and
returns its value in host order.

void htonb4(uint32_t host, uint8_t* network4) function

This functions takes a 32 bit word in host order, host, and writes its value in
network order at the four bytes pointed to by network4.

23

Index

building from source, 3 resistor divider networks, 17
CTCO, 10 SPDR, 16
SPI, 12, 14
divider_network_lower_resistor(), spi2_busy(), 12
17 spi2_init (), 12
divider_network_voltage(), 17 spi2_send_byte(), 12

spi2_send_data(), 13
spi3_clear_pending(), 15
spi3_clock_data(), 14
spi3_init (), 14
spi3_no_isr_clear_pending(), 15
spi3_no_isr_clock_data(), 15
spi3_no_isr_init(), 15

EEPROM, 5

gentle_eeprom_write_block(), 6
gentle_eeprom_write_byte(), 5
gentle_eeprom_write_dword(), 5
gentle_eeprom_write_word(), 5

htonb2 (). 22 spi3_no_isr_pend_data(), 15
htonbs()722 spi3_no_isr_wait(), 16
htonbd (). 22 spi3_pend_data(), 15
htonl(), 21 SPIF, 16
htons(), 21 SPSR, 16

TCCRO, 10

installation, 3

Internet Protocol, 21 thermistor, 19

thermistor_t2_at_r2(), 19

network order, 21 tx_only_chr(), 11
NTC (negative temperature coeffi- tx_only_clear(), 11
cient), 19 tx_only_init (), 10

ntohb2(), 22 tx_only_port_high(), 11
ntohb3(), 22 tx_only_port_low(), 11
ntohb4 (), 22 tx_only_str(), 11
ntohl(), 21 tx_only_str_P(), 11
ntohs(), 21

UART, software-based, 10
0CIEO, 10 uart_generate_ubrr(), 9
OCRO, 10 uart_rx_char(), 8

uart_rx_clear(), 8
PORTD, 10, 11 uvart_rx_init(), 7
PORTE, 10, 11 uart_rx_init_no_isr, 8

24

uart_tx_char(), 8
uart_tx_clear(), 8
uart_tx_data(), 9
uart_tx_init(), 8
uvart_tx_init_no_isr(), 8
uart_tx_str(), 9
uart_tx_str_P(), 9
uvart_tx_str_partial(), 9
uvart_tx_str_partial _P(), 9
UBRR, 9

USART, 7

25

