
AVR Threads Library 1.3

Dean Ferreyra
dean@octw.com

http://www.bourbonstreetsoftware.com/

November 11, 2008

Contents

1 Introduction 2

2 Build and Installation 3

2.1 Build . 3
2.2 Installation . 3

3 Basic Functions and Structures 5

3.1 Initializing the Library . 5
3.1.1 Functions . 5

3.2 Starting, Stopping, and Pausing Threads 5
3.2.1 Functions . 5

3.3 Task Switcher . 6
3.3.1 Functions . 7

4 Thread Synchronization 8

4.1 Mutexes . 8
4.1.1 Functions . 8

4.2 Basic Mutexes . 9
4.2.1 Functions . 9

5 Events 11

5.1 Functions . 11

6 Additional Functions and Structures 13

6.1 Functions . 13

7 Sample Program 14

1

Chapter 1

Introduction

The AVR Threads Library provides basic preemptive multi-threading to the
Atmel AVR family of microcontrollers. It is written mostly in C with some
assembly language. It implements a simple round-robin style task switcher.

This library provides basic thread start and stop functions, a couple of flavors
of mutual exclusion semaphore, and events to help synchronize threads.

I have released this code under the GNU Lesser General Public License with
the hope that others might find it useful.

2

Chapter 2

Build and Installation

To build and install the AVR Threads Library, you need to have already installed
the AVR GCC cross-compiler.

2.1 Build

To install the AVR Threads Library, unpack the source tree. If you downloaded
the *.tgz version, you can do this with the following command:

tar -xzf threads-1.3-src.tgz

Next, change directory to the head of the source tree that was just unpacked
and run the make command:

$ cd threads-1.3

$ make

This should build the AVR Threads Library for all the supported AVR micro-
controllers.

2.2 Installation

Once the libraries have been successfully built, you need to install the library
components to a location where the AVR GCC compiler can find them.

The default installation directory prefix is /usr/local. If you wish to change
this, you will have to edit the src/Makefile file in the source tree. In the
Makefile, you’ll find a line that looks like this:

prefix = /usr/local

Change this line to desired directory prefix. For example, if you’re using
WinAVR, you will need to change this this point to where WinAVR has been in-
stalled. For example, if WinAVR has been installed in c:\WinAVR, then change
the prefix line to this:

3

prefix = c:/WinAVR

Finally, from the head of the source tree, or from the src directory, run this:

$ make install

4

Chapter 3

Basic Functions and

Structures

3.1 Initializing the Library

3.1.1 Functions

void avr_thread_init(void) function

This function initializes the AVR Threads Library. It must be called before any
other AVR Threads Library function is called.

This function sets up a default context so that it can treat the currently
running program as a thread. It also prepares the “idle” thread that runs when
no other thread can run. After calling this function, task switches can occur,
both implicit and explicit.

3.2 Starting, Stopping, and Pausing Threads

3.2.1 Functions

void avr_thread_start(avr_thread_context* context, void

(*fn)(void), uint8_t* stack, uint16_t stack_size) function

This function starts a new thread of execution given a pointer to a
avr_thread_context, context; a pointer to a function where the thread will
begin execution, fn; a pointer to a stack, stack; and the size of the stack,
stack_size.

The memory pointed to by context must remain valid throughout the life
of the new thread.

The stack space provided must also remain valid throughout the life of the
new thread. The stack for each thread must be large enough to satisfy the

5

stack needs of the thread’s code, plus enough additional space to hold the entire
register state at the time of a task switch.

void avr_thread_stop(void) function

This function stops the current thread. It does this by taking the current thread
out of the task list and forcing a task switch.

void avr_thread_sleep(uint16_t ticks) function

This function places the given thread to sleep for the given number of task-
switcher ticks, ticks. The thread automatically awakens after the given time
has elapsed.

Passing zero to this function forces a task switch and is equivalent to calling
avr_thread_yield().

void avr_thread_yield(void) inline

This function forces an explicit task-switch away from the current thread. It is
implemented by calling avr_thread_sleep() with an argument of zero.

3.3 Task Switcher

The library needs the help of a timer interrupt and its interrupt service routine to
provide preemptive multitasking. The following two functions are designed to be
called from within an interrupt service routine tagged with the naked compiler
attribute. For example, here is the interrupt service routine for TIMER2 on the
Atmel ATmega128 microcontroller:

void SIG_OUTPUT_COMPARE2(void) __attribute__((naked));

void SIG_OUTPUT_COMPARE2(void)

{

/* Global interrupt can be re-enabled here if desired. */

/* sei(); */

avr_thread_isr_start();

/* Place your normal ISR code here. */

/* ... */

/* This must be the last function called. */

avr_thread_isr_end();

}

Also, here is an example configuration of TIMER2 that yields approximately
1kHz preemptive task switch frequency with a 16MHz crystal:

/* ... */

/* Setup TIMER2 mode. Include reset on overflow bit. */

/* Approximately 1 kHz for a 16 MHz crystal. */

6

TCCR2 = _BV(WGM21) | _BV(CS21) | _BV(CS20);

OCR2 = 250;

TCNT2 = 0;

TIMSK |= _BV(OCIE2);

/* Initialize library. */

avr_thread_init();

/* Enable global interrupts to start preemptive task switching */

sei();

/* ... */

3.3.1 Functions

void avr_thread_isr_start(void) function

Call this function at the beginning of the interrupt service routine used to
provide the preemptive multitasking. This function saves registers on the stack
in preparation for a task switch. The interrupt service routine must be declared
with the attribute ”naked”.

If you want to run your interrupt service routine code with global interrupts
enabled, place a call to sei() just before this function. No other code should
be placed ahead of the call to avr_thread_isr_start() since this will disturb
the thread context before this function has a chance to save it.

void avr_thread_isr_end(void) function

Call this function at the end of the interrupt service routine used to provide the
preemptive multitasking. This function does not return.

7

Chapter 4

Thread Synchronization

The AVR Threads Library provides two basic ways to synchronize threads:
mutual exclusion semaphores (mutexes) and events.

4.1 Mutexes

Mutual exclusion semaphores, or mutexes, provide a way to ensure that only
one thread is executing a particular piece of code at a time.

The mutexes described here keep track of ownership and lock counts. This
allows a thread to lock a mutex a number of times in the code path without
having to worry about the thread blocking. Also, threads that are blocked on
these mutexes are awakened in the order that they blocked so that the thread
that has been waiting the longest will be awakened when the mutex become
available.

4.1.1 Functions

uint8_t avr_thread_mutex_gain(volatile avr_thread_mutex* mutex,

uint16_t ticks) function

This function tries to gain ownership of the given mutex, mutex.
If the mutex is unlocked, the current thread locks the mutex and thereby

gains ownership of the mutex, and this function returns 1 immediately.
If the mutex is already locked and owned by the current thread, the lock-

count is incremented and the function returns 1 immediately.
If the mutex is already locked and owned by another thread, this thread

blocks until the mutex becomes available or until the given number of ticks,
ticks, have elapsed. If the thread successfully locks the mutex before the
number of ticks have elapsed, the function return 1. Otherwise, the function
times-out and returns 0. If the thread blocks and you have passed ticks as
zero, the function will wait indefinitely until the mutex becomes available.

8

void avr_thread_mutex_release(volatile avr_thread_mutex* mutex)

function

This function releases the given mutex. The mutex is not really re-
leased until this function is called the same number of times as the
avr_thread_mutex_gain() function was called in locking the mutex.

If multiple threads are waiting on this mutex, the thread that has been
waiting the longest is released.

struct avr_thread_mutex structure

This structure is used by the AVR Threads Library to hold mutex data. It
should be treated as an opaque object.

4.2 Basic Mutexes

Basic mutexes are very simple and lack some important features of the regular
mutexes (see 4.1). While the advantage of basic mutexes is their execution-speed
and a smaller code and memory foot-print, you should exercise care in using
them since they do not keep track of ownership or lock counts. For example, if
a thread locks a basic mutex and tries to lock it again, the thread will block.

4.2.1 Functions

void avr_thread_mutex_basic_gain(volatile avr_thread_mutex_basic*

mutex) function

This function tries to lock the given basic mutex, mutex. If the mutex is already
locked, the thread blocks on the basic-mutex waiting for another thread to
release the lock on the thread.

A thread that has called avr_thread_mutex_basic_gain()

should not call it again without first releasing the lock with
avr_thread_mutex_basic_release().

uint8_t avr_thread_mutex_basic_test_and_gain(volatile

avr_thread_mutex_basic* mutex) function

This function tries to lock the given basic mutex, mutex. If it is not already
locked by another thread, the mutex is locked and the function returns 1. If
it is already locked by another thread, the function does not block but instead
returns 0 immediately.

void avr_thread_mutex_basic_release(volatile

avr_thread_mutex_basic* mutex) function

This function releases the lock on the given basic mutex, mutex.

9

struct avr_thread_mutex_basic structure

This structure is used by the AVR Threads Library to hold basic mutex data.
It should be treated as an opaque object.

10

Chapter 5

Events

Events provide a way to signal to other threads that an event has occurred.

5.1 Functions

void avr_thread_event_set_wake_one(volatile avr_thread_event*

event) function

This function places the given event, event in a signaled state. If there are
threads waiting on this event, the thread that has been waiting the longest is
awakened.

While the event is signaled, a thread that calls avr_thread_event_wait()

or avr_thread_event_wait_and_clear() will return immediately.

void avr_thread_event_set_wake_all(volatile avr_thread_event*

event) function

This function places the given event, event in a signaled state. If there are
threads waiting on this event, all of them are awakened.

While the event is signaled, a thread that calls avr_thread_event_wait()

or avr_thread_event_wait_and_clear() will return immediately.

void avr_thread_event_clear(volatile avr_thread_event* event)

function

This function clears the given event, event. While the event
is clear, a thread that calls avr_thread_event_wait() or
avr_thread_event_wait_and_clear() will block until the event is sig-
naled.

11

uint8_t avr_thread_event_wait(volatile avr_thread_event* event,

uint16_t ticks) function

This function waits for the given event, event, to become signaled.
If the event is signaled when this function is called, this function returns

1 immediately. Otherwise, the thread is blocked until the event is signaled by
another thread.

While blocked, if the thread is awakened by another thread through a call to
avr_thread_event_set_wake_all() or avr_thread_event_set_wake_one(),
then this function returns 1. Otherwise, if the given number of ticks, ticks,
elapses, the function times-out and returns 0.

If you pass ticks as zero, this function will wait indefinitely until the event
becomes signaled.

uint8_t avr_thread_event_wait_and_clear(volatile

avr_thread_event* event, uint16_t ticks) function

This function waits for the given event, event, to become signaled.
If the event is signaled when this function is called, this function clears the

event and returns 1 immediately. Otherwise, the thread is blocked until the
event is signaled by another thread.

While blocked, if the thread is awakened by another thread through a call to
avr_thread_event_set_wake_all() or avr_thread_event_set_wake_one(),
then this function clears the event and returns 1. Otherwise, if the given number
of ticks, ticks, elapses, the function times-out and returns 0.

If you pass ticks as zero, this function will wait indefinitely until the event
becomes signaled.

struct avr_thread_event structure

This structure is used by the AVR Threads Library to hold event data. It should
be treated as an opaque object.

12

Chapter 6

Additional Functions and

Structures

6.1 Functions

void avr_thread_enable(void) inline

This function re-enables task switching that has been disabled by
avr_thread_disable().

The avr_thread_enable() and avr_thread_disable() functions keep
track of how many times they’ve been called. Task switching will only
be enabled when avr_thread_enable() has been called as many times as
avr_thread_disable() was called in disabling task switching.

void avr_thread_disable(void) inline

This function disables task switching. Task switching is re-enabled by calling
avr_thread_enable().

The avr_thread_enable() and avr_thread_disable() functions keep
track of how many times they’ve been called. Task switching will only
be enabled when avr_thread_enable() has been called as many times as
avr_thread_disable() was called in disabling task switching.

struct avr_thread_context structure

This structure holds data used by the AVR Threads Library to manage each
thread. It should be treated as an opaque object.

13

Chapter 7

Sample Program

Here is a sample program that demonstrates the basics of initializing the library
and starting a thread. It was originally written for the ATmega128.

#include <avr/io.h>

#include <avr/interrupt.h>

#include <avr-thread.h>

// Thread stack

uint8_t fn_stack[128];

// Thread context

avr_thread_context fn_context;

// Thread code

void fn(void)

{

uint8_t state = 0;

for (;;) {

if (state)

PORTB &= ~0x02;

else

PORTB |= 0x02;

state = ! state;

}

}

int main(void)

{

// Setup port B as all output.

PORTB = 0xff;

DDRB = 0xff;

// Setup timer 2 mode. Include reset on overflow bit.

14

// Approximately 1.008 kHz for 4 MHz crystal.

TCCR2 = _BV(WGM21) | _BV(CS21) | _BV(CS20);

OCR2 = 62;

TCNT2 = 0;

TIMSK |= _BV(OCIE2);

// Initialize avr-thread library.

avr_thread_init();

sei();

// Start new thread

avr_thread_start(&fn_context,

fn, fn_stack, sizeof(fn_stack));

uint8_t state = 0;

for (;;) {

if (state)

PORTB &= ~0x01;

else

PORTB |= 0x01;

state = ! state;

}

}

uint32_t switch_count = 0;

// Task switcher

void SIG_OUTPUT_COMPARE2(void) __attribute__((naked));

void SIG_OUTPUT_COMPARE2(void)

{

sei();

avr_thread_isr_start();

switch_count++;

avr_thread_isr_end();

}

15

Index

avr_thread_context, 13
avr_thread_disable(), 13
avr_thread_enable(), 13
avr_thread_event, 12
avr_thread_event_clear(), 11
avr_thread_event_set_wake_all(),

11
avr_thread_event_set_wake_one(),

11
avr_thread_event_wait(), 11
avr_thread_event_wait_and_clear(),

12
avr_thread_init(), 5
avr_thread_isr_end(), 7
avr_thread_isr_start(), 7
avr_thread_mutex, 9
avr_thread_mutex_basic, 10
avr_thread_mutex_basic_gain(), 9
avr_thread_mutex_basic_release(),

9
avr_thread_mutex_basic_test_and_gain(),

9
avr_thread_mutex_gain(), 8
avr_thread_mutex_release(), 9
avr_thread_sleep(), 6
avr_thread_start(), 5
avr_thread_stop(), 6
avr_thread_yield(), 6

building from source, 3

events, 8, 11

installation, 3

mutexes, 8
mutexes, basic, 9
mutual exclusion semaphores, 8

16

