
dsPIC Threads Library 1.0

Dean Ferreyra
dean@octw.com

http://www.bourbonstreetsoftware.com/

November 14, 2008

Contents

1 Introduction 2

2 Building From Sources 3

2.1 Library Types . 3

3 Working With the Library 5

3.1 Initializing the Library . 5
3.2 Starting and Stopping Threads 5
3.3 Task Switching . 6
3.4 Thread-local Storage . 6
3.5 Thread Management . 7

4 Example Code 8

1

Chapter 1

Introduction

The dsPIC Threads Library provides basic cooperative multitasking/multi-
threading to the Microchip dsPIC family of microcontrollers. It is written mostly
in C. It implements a simple round-robin style task switcher.

The cooperative multitasking design results in task switches that are less
expensive than would be possible with preemptive multitasking. This also allows
the library to be implemented in such a way that interrupts are never disabled.

This library provides basic thread start and stop functions, a way to associate
thread-local storage to threads, and some basic thread management functions,
including a way to determine a thread’s stack usage.

I have released this code under the GNU General Public License with the
hope that others might find it useful.

2

Chapter 2

Building From Sources

To build the dsPIC Threads Library, you need to have already installed the
Microchip MPLAB C30 cross-compiler. You also need a basic Unix-like build
environment with programs like Make and Sed. Under Windows I personally
install and use Cygwin.

This library also depends on the dsPIC Helper Library that can be found
at http://www.bourbonstreetsoftware.com/DsPICDevelopment.html. Af-
ter building that library, you will have to ensure that its header files are available
to the dsPIC Threads Library. The Makefile in the src directory has a variable
called DSPIC_HELPER_DIR that you can edit to specify the location of the dsPIC
Helper Library directory tree.

To build the dsPIC Threads Library, first unpack the source tree. You can
do this with the following command:

$ tar -xzf dspic-threads-1.0-src.tgz

Next, change directory to the head of the source tree that was just unpacked
and run the make command:

$ cd dspic-threads-1.0

$ make

This should build the dsPIC Threads Library for the supported dsPIC mi-
crocontrollers. This includes the dsPIC30F6015, dsPIC30F6010A, and the
dsPIC30F6010, though you can easily modify the Makefile to build for other
targets as well.

2.1 Library Types

The build process actually builds two libraries for each microcontroller type; one
for the default code size, and one using the -mlarge-code option. The libraries
are built in separate directories named after the corresponding microcontroller
and which option was enabled. For example, for the dsPIC30F6015, the libraries
can be found here:

3

• src/30F6015/libdspic-threads.a

• src/30F6015-large-code/libdspic-threads.a

4

Chapter 3

Working With the Library

3.1 Initializing the Library

Functions

void threads_init(void) function

This function initializes the library and must be called before calling any other
library function. This also designates the current execution state as the primor-
dial thread.

3.2 Starting and Stopping Threads

Functions

void threads_start(volatile thread_data_t* thread, void

(*fn)(void), uint16_t* stack, uint16_t stack_size) function

This function schedules a new thread and sets that thread to the “runnable”
state. The caller needs to provide the space for thread and stack. The
stack_size argument is the size of stack, in words. The stack space provided
is initialized with a particular bit pattern to help detect stack usaged.

The new thread is scheduled to follow the current thread. The thread starts
life by calling fn. If fn returns, the thread is unscheduled and an implicit task
switch occurs.

The call to threads_start() does not force a task switch.

bool threads_stop_current(void) function

This function unschedules the current thread, even if that thread is the
primordial thread. The only limitation is that the last thread in the
queue cannot be unscheduled. If the current thread cannot be unscheduled,
threads_stop_current() returns false.

5

The call to threads_stop_current() does not force a task switch, so a
task switch must be explicitly performed to move on to the next thread. For
example, the following pattern can be used when stopping the current thread:

// Try to stop the thread

if (threads_stop_current()) {

// Stop succeeded, now task switch

threads_task_switch();

// Will never get here

} else {

// Will get here if stop failed

}

bool threads_stop(volatile thread_data_t* thread) function

This function unschedules the given thread, even if that thread is the primordial
thread. The only limitation is that the last thread in the queue cannot be
unscheduled. If thread cannot be unscheduled, threads_stop() returns false.

3.3 Task Switching

This library uses a cooperative multitasking scheme, so all threads must explic-
itly request task switches to allow other threads to run.

Functions

void threads_task_switch(void) function

This function forces a task switch.
Because the library uses cooperative multitasking, this function must be

called to allow another thread to run. For smooth multitasking, you should
arrange your code so that each thread calls this function periodically.

There is only one situation that leads to an implict task switch: If the thread
function passed to threads_start() ever returns, the thread is unscheduled and
an implicit task switch is performed.

3.4 Thread-local Storage

Functions and Macros

void threads_tls_set(volatile thread_data_t* thread, void*

tls) function

This function associates pointer tls with the given thread. This pointer can
be retrieved by using threads_tls_get() or threads_tls_current_get().

6

void* threads_tls_get(volatile thread_data_t* thread) macro

This function retrieves the pointer associated by threads_tls_set() with the
given thread.

void* threads_tls_current_get(void) macro

This function retrieves the pointer associated by threads_tls_set() with the
current thread.

3.5 Thread Management

Functions and Macros

thread_data_t* threads_current_get(void) macro

This macro retrieves a pointer to the internal thread data for the currently
running thread. This pointer can be passed to any of the functions requiring a
thread_data_t pointer.

uint16_t threads_stack_usage(const volatile thread_data_t*

thread) function

This function returns the number of stack words that have been used by thread.
If thread is the primordial thread, this function returns 0.

void threads_runnable(volatile thread_data_t* thread, bool

run_p) macro

This macro sets the “runnable” state to run_p for thread. Only threads in the
“runnable” state will be considered during a task switch. Note that if no thread
is in the “runnable” state, a call to threads_task_switch() will result in an
infinte loop.

7

Chapter 4

Example Code

Here is a simple example program that initializes the library and then starts
two threads. The primordial thread plus the two new threads flash LEDs at
different rates. All the threads call the example sleep() function which ensures
that all the threads will run.

#include <p30fxxxx.h>

#include <threads.h>

// Hardware-specific configuration

_FOSC(CSW_FSCM_OFF & XT_PLL8);

_FWDT(WDT_OFF);

_FBORPOR(PBOR_ON & BORV_20 & PWRT_64 & MCLR_EN);

// Hardware-specific port specifications

#define LED_0_TRIS() (_TRISA9 = 0)

#define LED_0_OFF() (_LATA9 = 0)

#define LED_0_ON() (_LATA9 = 1)

#define LED_1_TRIS() (_TRISA10 = 0)

#define LED_1_OFF() (_LATA10 = 0)

#define LED_1_ON() (_LATA10 = 1)

#define LED_2_TRIS() (_TRISA14 = 0)

#define LED_2_OFF() (_LATA14 = 0)

#define LED_2_ON() (_LATA14 = 1)

// Sleep routine

void sleep(uint16_t n)

{

8

for (uint16_t i = 0; i < n; i++) {

for (volatile uint16_t j = 0; j < 1000; j++)

;

threads_task_switch();

}

}

#define STACK_SIZE 64

// Thread 1 configuration

thread_data_t thread1_data;

uint16_t thread1_stack[STACK_SIZE];

void thread1(void)

{

// Flash LED 1 forever

for (int i = 0; i < 5; i++) {

LED_1_ON();

sleep(50);

LED_1_OFF();

sleep(50);

}

}

// Thread 2 configuration

thread_data_t thread2_data;

uint16_t thread2_stack[STACK_SIZE];

void thread2(void)

{

// Flash LED 2 forever

for (int i = 0; i < 5; i++) {

LED_2_ON();

sleep(200);

LED_2_OFF();

sleep(200);

}

}

int main(void)

{

// Initialize some LED ports as output ports

LED_0_TRIS();

LED_1_TRIS();

9

LED_2_TRIS();

// Initialize threads library

threads_init();

// Start two threads

threads_start(&thread1_data, thread1,

thread1_stack, STACK_SIZE);

threads_start(&thread2_data, thread2,

thread2_stack, STACK_SIZE);

// Primordial thread flashes LED 0 forever

for (;;) {

LED_0_ON();

sleep(100);

LED_0_OFF();

sleep(100);

}

}

10

Index

building from source, 3

DSPIC_HELPER_DIR, 3

library types, 3

primordial thread, 5–7

task switching, 6
thread-local storage, 6
threads, starting and stopping, 5
threads_current_get(), 7
threads_init(), 5
threads_runnable(), 7
threads_stack_usage(), 7
threads_start(), 5
threads_stop(), 6
threads_stop_current(), 5
threads_task_switch(), 6
threads_tls_current_get(), 7
threads_tls_get(), 7
threads_tls_set(), 6

11

